Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 10(4): e12062, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33643547

RESUMO

We present a resource-efficient approach to fabricate and operate a micro-nanofluidic device that uses cross-flow filtration to isolate and capture liposarcoma derived extracellular vesicles (EVs). The isolated extracellular vesicles were captured using EV-specific protein markers to obtain vesicle enriched media, which was then eluted for further analysis. Therefore, the micro-nanofluidic device integrates the unit operations of size-based separation with CD63 antibody immunoaffinity-based capture of extracellular vesicles in the same device to evaluate EV-cargo content for liposarcoma. The eluted media collected showed ∼76% extracellular vesicle recovery from the liposarcoma cell conditioned media and ∼32% extracellular vesicle recovery from dedifferentiated liposarcoma patient serum when compared against state-of-art extracellular vesicle isolation and subsequent quantification by ultracentrifugation. The results reported here also show a five-fold increase in amount of critical liposarcoma-relevant extracellular vesicle cargo obtained in 30 min presenting a significant advance over existing state-of-art.


Assuntos
Vesículas Extracelulares/química , Filtração/métodos , Lipossarcoma/química , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Biomarcadores , Linhagem Celular Tumoral , Humanos , Neoplasias Lipomatosas/química , Ultracentrifugação/métodos
2.
Lab Chip ; 21(2): 319-330, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33319218

RESUMO

Previous in vitro studies have reported on the use of direct current electric fields (DC-EFs) to regulate vascular endothelial permeability, which is important for tissue regeneration and wound healing. However, these studies have primarily used static 2D culture models that lack the fluid mechanical forces associated with blood flow experienced by endothelial cells (ECs) in vivo. Hence, the effect of DC-EF on ECs under physiologically relevant fluid forces is yet to be systematically evaluated. Using a 3D microfluidic model of a bifurcating vessel, we report the role of DC-EF on regulating endothelial permeability when co-applied with physiologically relevant fluid forces that arise at the vessel bifurcation. The application of a 70 V m-1 DC-EF simultaneously with 1 µL min-1 low perfusion rate (generating 3.8 dyn cm-2 stagnation pressure at the bifurcation point and 0.3 dyn cm-2 laminar shear stress in the branched vessel) increased the endothelial permeability 7-fold compared to the static control condition (i.e., without flow and DC-EF). When the perfusion rate was increased to 10 µL min-1 (generating 38 dyn cm-2 stagnation pressure at the bifurcation point and 3 dyn cm-2 laminar shear stress in the branched vessel) while maintaining the same electrical stimulation, a 4-fold increase in endothelial permeability compared to the static control was observed. The lower increase in endothelial permeability for the higher fluid forces but the same DC-EF suggests a competing role between fluid forces and the applied DC-EF. Moreover, the observed increase in endothelial permeability due to combined DC-EF and flow was transient and dependent on the Akt signalling pathway. Collectively, these findings provide significant new insights into how the endothelium serves as an electro-mechanical interface for regulating vessel permeability.


Assuntos
Células Endoteliais , Microfluídica , Células Cultivadas , Endotélio , Endotélio Vascular , Permeabilidade , Estresse Mecânico
3.
Adv Wound Care (New Rochelle) ; 8(4): 149-159, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31016066

RESUMO

Objective: To evaluate if patterned electroceutical dressing (PED) is safe for human chronic wounds treatment as reported by wound care providers. Approach: This work reports a pilot feasibility study with the primary objective to determine physically observable effects of PED application on host tissue response from a safety evaluation point of view. For this pilot study, patients receiving a lower extremity amputation with at least one open wound on the part to be amputated were enrolled. Patients were identified through the Ohio State University Wexner Medical Center (OSUWMC) based on inclusion and exclusion criteria through prescreening through the Comprehensive Wound Center's (CWC) Limb Preservation Program and wound physicians and/or providers at OSUWMC. Wounds were treated with the PED before amputation surgery. Results: The intent of the study was to identify if PED was safe for clinical application based on visual observations of adverse or lack of adverse events on skin and wound tissue. The pilot testing performed on a small cohort (N = 8) of patients showed that with engineered voltage regulation of current flow to the open wound, the PED can be used with little to no visually observable adverse effects on chronic human skin wounds. Innovation: The PED was developed as a second-generation tunable electroceutical wound care dressing, which could potentially be used to treat wounds with deeper infections compared with current state of the art that treats wounds with treatment zone limited to the surface near topical application. Conclusion: Technology advances in design and fabrication of electroceutical dressings were leveraged to develop a tunable laboratory prototype that could be used as a disposable low-cost electroceutical wound care dressing on chronic wounds. Design revisions of PED-1 (1 kΩ ballast resistor) circumvented previously observed adverse effects on the skin in the vicinity of an open wound. PED-10 (including a 10 kΩ ballast resistor) was well tolerated in the small cohort of patients (N = 8) on whom it was tested, and the observations reported here warrant a larger study to determine the clinical impact on human wound healing and infection control.

4.
Analyst ; 143(18): 4256-4266, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30028451

RESUMO

Selective permeation of water vapor over liquid phase water through hydrophobic conduits finds broad use in separation processes, including desalination and membrane distillation. The tangential momentum accommodation coefficient (TMAC), a fundamental parameter that dictates momentum changes to a molecule colliding with a wall remains unknown for water vapor at room temperature and pressure conditions. Here, a nanofluidic platform with tunable hydrophobic regions that selectively barricaded flow of liquid water was patterned within glass nanochannels. The surface functionalization with an alkyltrichlorosilane led to either a fluoride or a methyl terminal group generating partially hydrophobic regions along the length of the nanochannels. Differential osmotic pressure solutions on either side of the hydrophobic region cause an isothermal evaporation-condensation process, which drives net water vapor transport from higher to lower vapor pressure solution, similar to osmotic distillation. Water vapor transport under such conditions for the 80 nm deep nanochannels was in the transitional regime with the Knudsen number ∼O(1). The TMAC was estimated experimentally to be of the order of 10-4-10-3 for both the hydrophobic coatings leading to a near-elastic collision of H2O molecules with the nanochannel walls. Use of the low TMAC surfaces was evaluated in two proof-of-concept technology demonstrations: (1) osmotic distillation using hyper-saline (brine) 3 M Utica shale flowback water as both the feed and draw and (2) separation of trace amounts of toluene and chloroform from water at high flux and selectivity. The results reported here likely provide new insights in designing hydrophilic-hydrophobic junctions for nanoscale liquid/vapor fluid transport with enhanced flux and selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...